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1 Introduction

Evaluation of complicated multidimensional integrals is a common computational problem

occurring in many areas of science. Calculation of scattering amplitudes in elementary

particle physics using Feynman perturbation theory [1] is a textbook example of integrals

over four or more variables. As dimension of the integration volume increases, the number

of integrand evaluations required by any generalized one-dimensional numerical method

grows exponentially. That is the major obstacle for applying any of those methods in

evaluation of multidimensional integrals. On the other hand, the convergence rate of

all Monte Carlo algorithms is independent of the dimension of the integral [2]-[5]. This

property makes the Monte Carlo approach ideal for integration over many variables.

In most applications where the functions being integrated are not expensive in terms

of the CPU time, and also in those which do not require high statistics, or large number

of function evaluations, various Monte Carlo algorithms usually work quite satisfactory in

the sense that calculations can be done within a reasonable time frame. However, high

statistics integrations of CPU intensive functions may require days, or even weeks of the

CPU time on fastest workstations presently available.1

In this note we o�er a new parallel scheme which may signi�cantly reduce the compu-

tational time needed for Monte Carlo evaluation of multidimensional integrals with CPU

expensive integrand functions. Our approach is based on the fact that networks connecting

large numbers of heterogeneous UNIX computers are becoming more and more widespread,

and also on the existence of several message-passing software packages [6, 7, 8], which per-

mit networks to be used as single large parallel computers. Clearly, the basic idea of

performing Monte Carlo integrations using many computers is to devise a scheme of divid-

ing one large calculation into a number of smaller parts, which can be handled separately

and in parallel. Nevertheless, there are many intricacies which have to be taken into ac-

count for an e�cient general purpose parallel algorithm, suitable for use in a heterogeneous

network environment. Among the most important issues are:

(i) Implementation of the underlying Monte Carlo algorithm and the random number

generation.

(ii) Flexibility to adapt to a particular network environment and to a speci�c function

1Examples of calculations which fall into this category can be easily found in high energy physics.
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being integrated.

(iii) Robustness with respect to occasional failure of one or more computers in the net-

work.

(iv) Cost of the communication between computers participating in the calculation.

The approach described in this paper addresses all of the above issues, and is incorporated

into a new Advanced Monte Carlo Integration (AMCI) package. The essential ingredients of

the AMCI package are the VEGAS algorithm [9], and the Parallel Virtual Machine (PVM)

software system [7]. Among various Monte Carlo schemes the VEGAS algorithm, developed

by G.P. Lepage [9], has shown to be one of the most e�cient ones. This highly successful

general purpose algorithm has become a standard computational tool of elementary particle

physics. On the other hand, the PVM software system [7] provides a uni�ed framework

within which parallel programs can be developed in an e�cient and straightforward manner

using existing computers. Because of its simple but complete programming interface, PVM

has gained widespread acceptance in the high-performance scienti�c community.

The rest of the paper is organized as follows: in Section 2 we brie
y describe the

general features of Monte Carlo integration and the VEGAS algorithm. Section 3 contains

the discussion of parallelism issues and the description of the parallel scheme suitable

for use in a heterogeneous network environment. This scheme is incorporated into the

AMCI package, whose most important features are outlined in Section 4. In Section 5 we

investigate the performance of the package in various situations, and compare it to the

performance of the ordinary VEGAS programs. Our conclusions are given in Section 6.

2 Monte Carlo integration and the VEGAS algorithm

Consider the d-dimensional integral of a function f(x), where x = x1; x2; : : : ; xd, over a

rectangular volume V ,

I =
Z
V
dx f(x) : (1)

If N points x are randomly selected from V with probability density p(x) (normalized to

unity), then it can be shown that for large N the integral in Eq. (1) is approximated by

I ' S(1) : (2)
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Here, S(1) is de�ned through

S(k) =
1

N

X
x

 
f(x)

p(x)

!k
: (3)

As di�erent sets of N points are chosen, the quantity S(1) will 
uctuate about the exact

value of I. The variance of this 
uctuation is given by2

�2 '
S(2) � (S(1))2

N � 1
: (4)

The standard deviation � indicates the accuracy of S(1) as an estimate of the true value of

the integral.

There exist a number of methods which can be used to reduce the variance �2 for

the �xed N . Two of the most popular techniques are importance sampling and strati�ed

sampling. The �rst one concentrates function evaluations where the integrand is largest

in magnitude, while the second one focuses on those regions where the contribution to the

error is largest. However, these and other methods of variance reduction require detailed

knowledge of the integrand's behavior prior to implementation [2]-[5]. Because of that,

they are not appropriate for a general purpose integration algorithm.

On the other hand, even though the VEGAS algorithm [9] is also primarily based on

importance sampling, the feature that distinguishes it from other Monte Carlo schemes is

that it is adaptive in the sense that it automatically samples the integrand in those regions

where it is largest in magnitude. This property makes it considerably more e�cient than

non-adaptive methods in high dimensions, or with non-analytic integrand functions.

Besides importance sampling, VEGAS also employs some strati�ed sampling, which

signi�cantly improves its e�ciency in low dimensions. When strati�ed sampling is used,

the algorithm divides integration volume intoM = Kd subvolumes, where K is the number

of subdivisions in each of d integration dimensions.3 In all of those subvolumes VEGAS

performs an N -point Monte Carlo integration using importance sampling. Thus, the total

number of function evaluations in one iteration is given by NT = N �M .

2Note that the reliable estimates of �2 are possible only if the integralZ
V

dx
f2(x)

p(x)

is �nite.
3Strati�ed sampling in VEGAS can be disabled.
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The basic idea of importance sampling in VEGAS is to construct a multidimensional

probability density function that is separable,

p(x) =
dY
i=1

pi(xi) ; (5)

where all pi's are normalized to unity. The optimal one-dimensional densities for separable

geometry can be shown to be [2]

pi(xi) /

2
4Z

0
@Y
j 6=i

dxj
pj(xj)

1
A f2(x)

3
5
1=2

; (6)

which in one dimension reduces to p(x) / jf(x)j. The above expression immediately sug-

gests VEGAS' adaptive strategy: in each iteration an N -point Monte Carlo integration

is performed in all of Kd subvolumes, using a given set of one-dimensional probability

densities (initially all constant). Besides accumulating S(1) and S(2), which are needed

for estimating the integral and its standard deviation, VEGAS also accumulates K � d

estimators of the right-hand side of Eq. (6). These are then used to determine the im-

proved one-dimensional densities for the next iteration.4 In this way, an empirical variance

reduction is gradually introduced over several iterations, and the accuracy of integration

is in general enormously enhanced over the non-adaptive Monte Carlo methods.

For each iteration results of M integrations in the di�erent subvolumes have to be com-

bined to give the total integral and its variance. We denote Ii;j and �
2
i;j as results obtained

for the j-th subvolume and in the i-th iteration, using Eqs. (2) and (4), respectively. The

�nal iteration answers for the total integral and its variance are calculated by the relations

Ii =
1

M

MX
j=1

Ii;j ; (7)

�2
i =

1

M2

MX
j=1

�2
i;j : (8)

Because each of m iterations is statistically independent, their separate results can be

combined into a single best answer and its estimated variance through

�I =

Pm
i=1 Ii=�

2
iPm

i=1 1=�
2
i

; (9)

��2 =

 
mX
i=1

1

�2
i

!�1

; (10)

4For details related to the re�nement of the sampling grid the reader is referred to [9].
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with the �2 per degree of freedom given by

�2=dof =
1

m� 1

mX
i=1

(Ii � �I)2

�2
i

: (11)

When the algorithm is working properly, �2=dof should not be much greater than one,

since (Ii � �I)2 � O(�2
i ). Otherwise, di�erent iterations are not consistent with each other.

3 Parallelism considerations

As mentioned earlier, the basic idea of performing multidimensional Monte Carlo integra-

tion using many computers is to �nd a scheme of dividing one large calculation into many

small pieces, which can be handled separately and in parallel. Because of that, the most

natural framework for the problem at hand is the so called master/slave model. In this

model the master program spawns the slave tasks and distributes the di�erent parts of the

calculation to the di�erent slave processes. These processes do their share of work, and

send the results back to the master program which combines them together.

The most important problem which one has to solve here is how to divide the calculation

between the slave tasks, while making sure that the �nal result returned by the parallel

algorithm does not depend on factors such as the speed of di�erent computers in the

network, the number of slave processes used for the calculation, etc.

The essential ingredient of our approach is that all parallel tasks generate the same list

of random numbers. That is not di�cult to accomplish because all tasks use the same

random number generator, whose initial state is furnished to them by the master program.

There are several good reasons for using this method:

(i) Reproducibility of the parallel algorithm can be easily achieved, regardless of the

number of parallel processes participating in the calculation.

(ii) Possibility of reproducing any part of the calculation, which is important in case of

possible failures of one or more computers in the network.

(iii) Low master-slave communication cost.

All of the above points will be discussed in more details below.
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3.1 Parallel implementation of the VEGAS algorithm

Since the number of available computers varies from situation to situation, for parallelizing

VEGAS we �nd it convenient to choose one of the integration dimensions. At the beginning

of each iteration, the master program has to divide the integration region in that dimension

into n parts,5

0 = y0 < y1 < : : : < yn = 1 : (12)

Each subregion �yi = yi � yi�1 in the task grid belongs to one parallel process. Note that

the task grid is di�erent from the VEGAS' sampling grid, which divides the same region

into K subdivisions,

0 = x0 < x1 < : : : < xK = 1 ; (13)

with �xk = xk � xk�1.

In cases where only importance sampling is used, the task i has to evaluate the integrand

only if the random point happens to fall within its one-dimensional subregion �yi. In this

way, all tasks accumulate results for the entire integration volume. For strati�ed sampling

technique, which involves dividing integration region into M disjoint subvolumes, this

strategy would not be the most e�cient one, since it would require keeping track of results

in all subvolumes. For large M this would imply lots of additional storage space in both

master and slave programs, and also a large overhead in the master-slave communication.6

Therefore, for strati�ed sampling it is more e�cient to let one task accumulate all results

within a given subvolume. This can be accomplished because all parallel tasks generate the

same list of random numbers. Given its one-dimensional subregion boundaries, once the

task samples the �rst point for integration in one particular subvolume, it decides whether

to accumulate results in that subvolume, or to simply generate N random points without

5In this section x and y are always coordinates along the integration dimension used for parallelizing

VEGAS. Also note that all coordinates are scaled: if we have zL and zU as the actual lower and upper

boundaries of integration, then the actual integration coordinate z corresponds to x = (z� zL)=(zU � zL),

which ranges from 0 to 1.
6To illustrate that, consider an example of 5-dimensional integration with requested 106 function eval-

uations per iteration. If strati�ed sampling were used, the VEGAS algorithm would divide integration

volume into approximately 3:7�105 subvolumes, and in each of them it would perform a two-point Monte

Carlo integration. Assuming the double precision arithmetic, storing S(1) and S(2) for each subvolume

would require about 6 megabytes of data, which would have to be passed by the slave tasks to the master

program in each iteration.
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doing anything. In other words, if the �rst point sampled in one particular subvolume

happened to be in the subregion �yi of the task grid, then that subvolume belongs to the

task i. When this strategy is used, the work among the parallel tasks is actually divided

by subvolumes.

In either case, after it samples all of N �M random points in one iteration, the slave

task sends accumulated results to the master program. Once all results arrive, the master

program combines them to obtain the �nal iteration results for the integral and its variance,

calculates the cumulative results for �I and ��2, and re�nes the sampling grid. Note that

one of the advantages of this approach is its minimal communication cost: the slave tasks

receive all necessary data (e.g., the sampling grid) at the beginning of each iteration, and

send the results back after completing their share of work.

3.2 Flexibility issues

Ideally, all tasks running in parallel would complete one particular iteration at the same

time, which would minimize their idle time, as well as the total execution time of the parallel

algorithm. However, in a typical network environment there are many factors which a�ect

the performance of the program running in parallel. For example, the calculation may be

a�ected by the di�erent computational speed of computers in the network, by the di�erent

machine loads, etc. Furthermore, when the function being integrated is concentrated in

one particular region of space, VEGAS quickly adjusts the sampling grid so that most of

integrand evaluations fall into that region. If that region happened to be entirely within

one subdivision �yi of the task grid, then the method we described above would give hardly

any advantage over the standard VEGAS algorithm, since most of the work would have to

be done by one task. Because of these reasons, it is essential that the parallel algorithm

has the ability to adapt to a speci�c situation, i.e., to the given network environment and

to the function being integrated.

One possible solution to the above problems would be quite simple:7 assuming that we

have n parallel tasks participating in the calculation, instead of dividing the task grid into

exactly n subregions, we could divide it into m parts, where m � n. After completing

calculations in one particular subdivision of the task grid, the slave task would continue

working on the next available one. In this way, the faster processes would contribute more

7We thank W.B. Kilgore for pointing out this possibility to us.
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to the calculation than the slower ones, and the optimal work load could be achieved

automatically. However, the problem with this strategy is that it is associated with the

large cost of the communication between the master program and the slave tasks.

Because of that, in order to keep the communication cost low and still achieve an

optimal work distribution, we propose to measure the time required by the di�erent tasks

to complete their part of the calculation in a given iteration, and to use that information

to distribute the work load for the next one. In other words, if, for example, the task i

takes longer than others to complete its share of work, its number of integrand evaluations

has to be decreased. This can be done simply by adjusting the width of the subregion �yi

belonging to that task.

Denoting ai as the time needed by the task i for one integrand evaluation, and also

bi as the overhead time related to other necessary operations (e.g., the random number

generation), the time required by that task to complete one iteration is given by

ti = aiNi + bi ; (14)

where Ni is the number of integrand evaluations. Constants ai and bi in Eq. (14) are

highly dependent on the characteristics of the computer on which the task i is running.

In order to determine them both, we would have to use the information from the two

successive iterations. However, since our goal is to develop a scheme useful for high statistics

integrations of computationally demanding functions, we can safely assume that the parallel

tasks spend most of their time evaluating the integrand. This means that aiNi � bi, and

hence

ti ' aiNi : (15)

Let us also denote t0i as what would be the optimal iteration completion time for the task

i,

t0i ' aiN
0
i ; (16)

which is given in terms of the optimal number of function evaluations N 0
i . As mentioned

earlier, the perfect work load distribution among the parallel tasks would be achieved if all

of them �nished their calculations at the same time. Therefore, in the ideal case we would

have

t0i ' �t0 ; (17)
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where �t0 = 1
n

Pn
j=1 t

0
j. From Eqs. (16) and (17) we see that N 0

i / 1=ai. Using Eq. (15),

and keeping in mind that the total number of function evaluations in one iteration has to

be kept constant (NT ), we put

N 0
i = NT

Ni=tiPn
j=1Nj=tj

; (18)

which satis�es the requirement
nX
i=1

N 0
i = NT : (19)

Even though the above derivation was rather heuristic, the �nal expression for N 0
i is exact.

It can be obtained in a more rigorous way using the method of Lagrange multipliers, by

minimizing the function

f(N 0
1; N

0
2; : : : ; N

0
n) =

nX
i=1

(�t0 � t0i)
2 ; (20)

subject to the constraint given in Eq. (19).

Eq. (18) allows the master program to use the information from the previous iteration

to determine the optimal number of integrand evaluations for the task i in the next one.

Since the task work load can be adjusted by changing the width of subdivisions in the

task grid, we still have to relate N 0
i to �yi. In the VEGAS algorithm, the probability of a

random point being generated within the k-th subdivision of the sampling grid is given by

[9]

p(x) =
1

K�xk
; for xk�1 � x < xk : (21)

Using this formula it is not di�cult to show that the expected number of integrand evalu-

ations for an arbitrary region between x and x0 is given by

~N(x; x0) = NT

Z x0

x
dx p(x)

=
NT

K

 
k0 � k +

x0 � xk0�1

xk0 � xk0�1
�

x� xk�1
xk � xk�1

!
; (22)

where we have assumed xk�1 � x < xk and xk0�1 � x0 < xk0. The above expression can

be used to �nd the optimal subdivisions yi of the task grid, which are determined by the

relation

N 0
i = ~N(yi�1; yi) : (23)
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Given that yi�1 is known (y0 = 0), we can solve this equation for yi,

yi = xk0�1 + (xk0 � xk0�1)

 
K

NT
N 0
i + k � k0 +

yi�1 � xk�1
xk � xk�1

!
; (24)

and hence obtain the optimal task grid. In Eq. (24) k and k0 are again de�ned so that

xk�1 � yi�1 < xk and xk0�1 � yi < xk0.

Since the distribution of the work load among the parallel tasks is one of the most

important ingredient of our approach, we summarize it below:

1. In each iteration the slave tasks keep track of their actual number of integrand eval-

uations, as well as of the time they require to complete the calculation.

2. Using that information, the master program determines from Eq. (18) what would

be the ideal number of function evaluations for each slave task.

3. After computing the new sampling grid for the VEGAS algorithm, the master pro-

gram calculates the new task grid iteratively using Eq. (24). Note that the boundary

conditions y0 = 0 and yn = 1 have to be satis�ed.

In this way, after each iteration our algorithm adjusts the task work load to achieve the

best possible performance in a given situation, while keeping low cost of the communication

between the master program and the slave tasks.

We should also mention that the above approach can be easily generalized to allow

the possibility of dividing the calculation into m � n parts (m � 2), so that each of n

parallel tasks would work on m subregions in one iteration. Although this would increase

the master-slave communication cost, as well as the overhead time the slave tasks require

in each iteration, it would also shorten the time between the two successive task grid

adjustments, which may be useful in an environment where the di�erent machine loads

change rapidly.

3.3 Robustness of the algorithm

Another problem which has to be considered here is a possibility that occasionally one or

more parallel tasks may fail during the calculation.8 Unless the algorithm has the ability to

8This can happen due to the lost network connection, failure of a particular computer in the network,

etc.
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detect such an event, and also to recalculate the lost results, the task failure would require

repeating the entire calculation.

In the scheme we are proposing in this paper, after distributing various parts of the

calculation to the parallel processes, the master program waits for all of them to complete

their share of work and send the results back. However, if none of the results arrive after

a certain amount of time, the master program has to verify the current state of all parallel

tasks. In case that one or more tasks had failed, it has to divide the lost parts of the

calculation among the remaining processes.

Even though the above strategy looks simple, there are many details which have to

be taken care of in case of the task failure during the calculation. Nevertheless, since the

algorithm described in this section is ideally suited for a recursive implementation of the

work distribution, it also allows for an e�cient way of dealing with the task loss.

4 The AMCI package

We have incorporated the general scheme described in the previous section into a new

Advanced Monte Carlo Integration package.9 Besides relying on the VEGAS algorithm

[9], as well as on the long period (> 2 � 1018) random number generator developed by

P. L'Ecuyer [10], the package also uses the standard set of communication routines in the

PVM software system [7].10

Since the scheme presented in Section 3 is based on the master/slave model, the AMCI

package has two main parts: the master and the slave subroutines, each accompanied with

functions taking care of the master-slave communication via message-passing. All of the

AMCI functions, except the user-related ones, are placed into several libraries which have

to be linked with the driver program. The package is written in the ANSI C programming

language (with the Fortran interface provided), so that it should compile easily on all

platforms which are also supported by the PVM software system [7].11

The most important features of the package are as follows:

9The AMCI package can be obtained by sending an e-mail to the author at veseli@fnal.gov.
10The latest version of the PVM software can be obtained by anonymous ftp to netlib2.cs.utk.edu, or

from WWW by using the address http://www.netlib.org/pvm3/index.html.
11In the near future, we hope to develop the Message Passing Interface (MPI) [8] version of the package.
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1. Given the same seed for the random number generator, the AMCI master routine

always returns the same answer as the ordinary VEGAS algorithm (with or without

strati�ed sampling), regardless of the number of parallel tasks used for the calculation.

2. All of the useful features of the original VEGAS program are also built into the

AMCI package. For example, the master routine can be called again after initial

preconditioning of the sampling grid. There is also a possibility of computing any

number of arbitrary distributions of the sort

dI

dy
=
Z
V
dx f(x)�(y � g(x)) ; (25)

with

I =
Z
dy
dI

dy
: (26)

3. AMCI is 
exible enough to adapt to speci�c conditions in the given network environ-

ment, and also to the particular function being integrated. This property signi�cantly

increases the e�ciency of the package. For example, the master routine can be ini-

tially called with only a small number of integrand evaluations in a single iteration.

Even though all results obtained in that call would be discarded, this procedure

would allow AMCI to quickly optimize the task grid for the given con�guration of

computers.

4. AMCI has built in means of detecting a possible task failure and reproducing the lost

parts of the calculation in an e�cient way. Because of that, the master program is

guaranteed to complete the calculation as long as at least one slave task is running.

5. The package is easy to use, and requires no knowledge of parallel programming tech-

niques.12

The last characteristic of the AMCI package is extremely important, since it allows a

typical user to bene�t from distributed computing, without becoming an expert in that

area.

12After the PVM software has been properly installed, using the AMCI master subroutine is no more

di�cult than using any of the standard subroutines from [5].
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5 Examples and performance analysis

For comparison of the AMCI performance to that of the standard VEGAS program, we

considered integration of a spherically symmetric Gaussian placed in the center of the

integration region,13

Id =
�

1

a�1=2

�d Z 1

0
ddx exp

 
�

dX
i=1

(xi �
1
2
)2

a2

!
; (27)

with a = 0:1. As our PVM con�guration we used 25 NeXT workstations in the Fermilab

Theory Group cluster. Most of those machines were equipped with 33 MHz processor, but

some of them had 25 MHz CPU's. For each integration with n requested parallel tasks

(2 � n � 10), the PVM resource manager would decide which n workstations would be

used for the calculation. In this way, we minimized e�ects of various factors, such as the

speed of di�erent computers, di�erent machine loads, etc. In order to further improve our

performance analysis, and to estimate the statistical errors, for each n we performed 10

independent integrations, which means that n parallel tasks were always running on the

di�erent combination of n computers from the PVM con�guration. We denote T
(n)

as

the average time required by the AMCI master routine to complete the calculation using

n slave tasks. On the other hand, the standard VEGAS program was executed on all

machines from the PVM con�guration, and the shortest execution time, denoted by T (1),

was used for comparison with T
(n)
. In Figures 1 and 2 we show results for the relative

execution time T
(n)
=T (1), and for the relative e�ciency T (1)=nT

(n)
, which were obtained

in the two tests that were performed. In both �gures we also show the corresponding

statistical errors.

The test 1 consisted of calculating the above integral in d = 5 dimensions, with about

105 function evaluations in each of 10 iterations. Even though the integrand was relatively

simple, with three tasks AMCI has reduced the total execution time to about 2/3 of the

time required by the standard VEGAS program (see Figure 1). However, addition of new

tasks after n = 4 did not help signi�cantly in terms of improving the performance, which

was still far from the ideal case (shown with the dashed line). The reason for that is the

simplicity of the function being integrated: in this particular case the execution time of

the ordinary VEGAS program was 400 seconds, out of which about 40% (160 seconds) was

13Note that the same test function was also used in [9].
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used for the random number generation. Under the circumstances such as those, in which

the condition aiNi � bi is not satis�ed and Eqs. (15) and (16) are not valid, the parallel

algorithm gets saturated with a small number of processes. Because of that its e�ciency

as a function of the number of processors participating in the calculation decreases rapidly,

which is illustrated in Figure 2.

In order to show how the AMCI performance with respect to the standard VEGAS

program improves as calculations becomemore demanding, for the test 2 we have arti�cially

slowed down the implementation of the integrand function from Eq. (27). As a result, T (1)

has been increased by about a factor of 10, from 400 to 4366 seconds, so that the random

number generation in this case used less than 4% of the total VEGAS execution time. As

shown in Figure 1, the test 2 results for T
(n)
=T (1) follow the ideal 1=n curve much more

closely than before, and statistical errors are also reduced. Consequently, the results for

the relative e�ciency of the parallel algorithm are signi�cantly better than those obtained

in the test 1 (see Figure 2).14

Figures 3, 4 and 5 are meant to illustrate how the algorithm described in this paper

actually works, and how it behaves in various situations. Figure 3 shows the average

test 2 times, together with their respective statistical errors, that were required by AMCI

running with 10 parallel tasks to complete the di�erent iterations. The longest time was

needed for the �rst iteration, when all tasks had to perform equal amounts of work. After

the necessary information about the di�erent tasks was obtained in the �rst iteration, the

master subroutine quickly optimized the task grid for the given con�guration of computers.

We again point out that for high statistics calculations better performance in the �rst

iteration can be achieved if the master subroutine is initially called with a small number

of integrand evaluations in a single iteration. This would allow for the fast optimization of

the task grid, and for the much more e�cient subsequent calls with higher statistics.

Figure 4 shows iteration completion times for one of the test 2 runs with three parallel

tasks. As one of the computers used for that particular calculation was slower than the

other two, the task 2 took considerably longer time than tasks 1 and 3 to complete the

�rst iteration. Again, this was accounted for in subsequent iterations by optimizing the

work load for the di�erent tasks.

14For the results shown in Figures 1 and 2 one has to bear in mind that the average AMCI execution times

were compared to the shortest VEGAS execution time for all of the machines from the PVM con�guration,

and that not all of these computers were equally fast.
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Figure 5 illustrates the behavior of the algorithm in cases in which one of the tasks fails

during the calculation. In order to simulate that, we repeated one of the test 2 calculations

by starting with �ve parallel tasks, and then removing one of the computers from the PVM

con�guration. This caused failure of the task 4 during the 6-th iteration. Because of that,

part of the calculation belonging to the task 4 had to be divided among the remaining

tasks. After iteration 6 was completed, AMCI adjusted to the new situation, and the

remaining tasks were again given the optimal work load. Note that the time required for

completing iteration 6 was only about 15% longer than the time needed for later iterations,

which shows that AMCI deals with task failures in an e�cient way.

Finally, we brie
y describe one real example from high energy physics where AMCI

would be very useful: theoretical description of the vector boson production at hadronic

colliders. This topic is extremely important in view of the precision measurements of the

W mass, which may constrain parameters of the standard model (e.g., the Higgs mass). At

present, the state of the art of the theory in the description of the vector boson production

is based on the resummation formalism of Collins, Soper, and Sterman [11], which involves

an inverse Fourier transform of the cross section from the impact parameter space to

the transverse momentum space. Because of the oscillatory nature of the integrand in

that Fourier transform, the resummation calculations in the impact parameter space are

enormously di�cult and lengthy. For example, the program developed for the description

of theW and Z production [12], which is based on the standard VEGAS algorithm, requires

more than 20 hours on an IBMRS6000 workstation to complete one calculation with a very

modest statistics of about 105 (total) integrand evaluations in the transverse momentum

range from 0 to 50 GeV. One should note here that the experimental analyses usually

require order(s) of magnitude higher statistics.

To make things even worse, the resummation formalism also involves several unknown

parameters, which have to be extracted from the experimental vector boson transverse

momentum distributions. In order to �nd the best �t to the data, calculations such as the

one mentioned above have to be repeated many times, once for each di�erent set of the

non-perturbative parameters.

Even though the above numbers are just rough estimates, they illustrate the fact that

the theoretical description of the vector boson production involves computationally ex-

tremely demanding calculations, which take a very long time with the standard VEGAS
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program. On the other hand, given n equally fast computers, the AMCI package would re-

duce the VEGAS execution time by almost a factor of 1=n, thus making these calculations

much more accessible.

6 Conclusions

In this paper we have developed a new parallel multidimensional integration scheme, suit-

able for use in a heterogeneous network environment. This scheme, based on the well-known

adaptive Monte Carlo method (the VEGAS algorithm), is incorporated into a new inte-

gration package (AMCI), which employs the standard set of the message-passing routines

in the PVM software system. We have compared the AMCI performance with that of the

ordinary VEGAS program, and found that the new package is signi�cantly faster in cases

involving high statistics integrations of computationally demanding functions.
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Figure 1: AMCI execution time scaled with respect to the execution time of the standard

VEGAS program, T
(n)
=T (1), and shown as the function of the number of parallel tasks used

for the calculation. The actual VEGAS execution times were 400 and 4366 seconds for tests

1 and 2, respectively. The dashed line denotes the ideal case, for which T
(n)
=T (1) = 1=n.

20



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e 
ef

fic
ie

nc
y

Number of tasks

Test 2

Test 1

Figure 2: AMCI e�ciency for tests 1 and 2 scaled with respect to the number of tasks

participating in the calculation, T (1)=nT
(n)
.
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Figure 3: The test 2 time required by AMCI running with 10 parallel tasks to complete

the di�erent iterations. The full line shows the average iteration completion time. For

comparison, the standard VEGAS program required about 437 seconds for each iteration

on the fastest machine in the PVM con�guration.

22



140

150

160

170

180

190

200

210

220

230

240

1 2 3 4 5 6 7 8 9 10

Ite
ra

tio
n 

co
m

pl
et

io
n 

tim
e 

[s
]

Iteration

Task 1
Task 2
Task 3

Figure 4: The time required for the di�erent tasks to complete their parts of the calculation

in the di�erent iterations. These results correspond to one of the test 2 runs with three

parallel tasks. The full line shows the average iteration completion time. For comparison,

the standard VEGAS program required about 437 seconds for each iteration on the fastest

machine in the PVM con�guration.
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Figure 5: The time required for the di�erent tasks to complete the di�erent iterations in

the situation in which one of the tasks had failed. To obtain these results, we repeated

one of the test 2 runs by starting with �ve parallel processes, and then removing one of

the computers from the PVM con�guration. This caused failure of the task 4 during the

6-th iteration. The average iteration completion time is shown with the full line. For

comparison, the standard VEGAS program required about 437 seconds for each iteration

on the fastest machine in the PVM con�guration.
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